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In this article, we develop a new scheme of exact simulation for a class of tempered stable (TS) and other

related distributions with similar Laplace transforms. We discover some interesting integral representations

for the underlying density functions that imply a unique simulation framework based on a backward recursive

procedure. Therefore, the foundation of this simulation design is very different from existing schemes in the

literature. It works pretty efficiently for some subclasses of TS distributions, where even the conventional

acceptance-rejection mechanism can be avoided. It can also generate some other distributions beyond the

TS family. For applications, this scheme could be easily adopted to generate a variety of TS-constructed

random variables and TS-driven stochastic processes for modelling observational series in practice. Numerical

experiments and tests are performed to demonstrate the accuracy and effectiveness of our scheme.
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1 INTRODUCTION

From the empirical analysis, it is well known that asset returns in financial markets are not nor-

mally distributed, and the observations often present skewness and heavy tails, especially during

crises. Stable distributions, first introduced by Lévy (1925), is a very important class that often

provides an alternative model for price changes observed in financial markets. More precisely, the

distributions form a four-parameter family of infinitely divisible distributions (Sato 1999, p. 31),

which can be defined by the logarithm of the characteristic function,
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whereϕ (v ) is the characteristic function of stable distributions, i is the imaginary unit, i.e., i2 = −1,

α ∈ (0, 2] is the stability index, ζ ∈ [−1, 1] is the skewness parameter, γ ∈ R+ is the scale parameter,
and � ∈ R is the location parameter. Their great flexibility attracted many scholars in economics and

finance at least since the 1960s, and the study was initialised by the seminal work of Mandelbrot

(1960, 1961, 1963a, 1963b) and followed by Fama (1965) and Fama and Roll (1968, 1971). Tremendous

applications of stable distributions and their various extensions can be found in the literature (e.g.,

option pricing and portfolio management); see a detailed survey by McCulloch (1996).

However, stable distributions could involve infinite moments, and this property limits its appli-

cations. For instance, this model may lead to an infinite price in the option pricing; see Carr and

Wu (2003). Therefore, the distribution, in particular its tail, needs to be adjusted. Tempered stable
(TS), or exponentially tilted stable (ETS) distribution1 provides a very important class that attempts

to overcome this limitation of the original stable distribution. It was initially proposed by Tweedie

(1984); see also Hougaard (1986) and Jorgensen (1987). An additional parameter of tilt is included

so that their moments exist. The TS law is a natural generalisation, as it inherits desirable features

from the stable distribution, such as infinite divisibility, skewness, and leptokurtosis. The resulting

tails are lighter than those of the stable but heavier than those of the Gaussian, so it is more suit-

able for modelling financial returns. Moreover, for those distributions that are obtained by tilting

one-sided stable distributions2 with ζ = 1, namely the positive TS distributions, they can be further

adopted as the building blocks to construct various stochastic processes (such as Lévy TS subordi-

nators and processes) that facilitate numerous applications in finance and many other fields, e.g.,

for modelling the dynamics of stock prices, stochastic volatilities, or interest rates just to name a

few; see Barndorff-Nielsen and Shephard (2001a, 2002), Schoutens (2003), Cont and Tankov (2004),

Kyprianou (2006), and, more recently, Barndorff-Nielsen et al. (2012).

Still, the challenging issue is that, with only certain exceptions, density functions of stable and

TS distributions have no explicit expressions (Zolotarev 1986, p. 2). Hence, simulation-based meth-

ods, in particular exact simulation schemes without bias, become extremely important in practice,

especially for the purposes of statistical inference, numerical validation, risk analysis, and pricing

exotic financial derivatives.

Let us first have a brief review of some important simulation schemes for stable, TS, and their

related distributions in the literature. For a stable distribution in general, the standard algorithm

for exact simulation is the classical method of Chambers et al. (1976) (CMS),3 which is the extension

of the work by Kanter (1975). This state-of-the-art algorithm is remarkably elegant, accurate, and

fast, since the procedure is direct, which means that even the acceptance-rejection (A/R) procedure

is not required. However, for the TS distribution, it is usually hard to find such a direct scheme for

exact simulation. The very popular algorithm is the classical simple stable rejection (SSR) scheme

(with the algorithm provided in Appendix A). It is straightforward to be implemented, as it is

developed by simply combining the classical CMS method with the A/R scheme; see Brix (1999)

and Baeumer and Meerschaert (2010) for more details. More recently, Devroye (2009) developed

1Here, we adopt the naming for the TS distribution similarly as Küchler and Tappe (2013) and Kim and Kim (2016). In

fact, the class of TS distributions has been recently enlarged by Rosiński (2007) and Grabchak et al. (2012) in a variety of

specifications, so we consider them as generalised TS distributions.
2The stable distributions are one-sided when α ∈ (0, 1) and ζ = ±1.
3The detailed proof is given by Weron (1996).
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an alternative algorithm of double rejection (DR) method such that the complexity is uniformly

bounded. Hofert (2011a, 2011b) suggested a fast rejection algorithm to enhance the original SSR

scheme. All the three algorithms are exact4 and based on the A/R scheme, which can be applied to

the class of positive TS distributions with stability index α ∈ (0, 1)5.

For the existing algorithms to simulate a TS random variable (RV), each of them has its own ad-

vantages but also have some limitations for some choices of parameters. It is therefore very useful

to develop some alternative simulation schemes to sample the TS family. In this article, we dis-

cover a multiple integral representation for the density functions of TS distributions with stability

index in a general dyadic form
q

2n ∈ (0, 1) for q,n ∈ N+, the integral representation allows us to de-

velop an alternative simulation framework for the TS distributions with stability index
q

2n ∈ (0, 1).
In particular, when q is a binary number, an extremely efficient direct scheme can be established,

which means that the algorithm only involves the explicit inverse transformation without the A/R

mechanism. On one hand, this alternative algorithm could be very helpful for numerical validating

for TS-based stochastic models, because a variety of choices of q, n combined with the different

values of parameters β and θ would provide enough flexibility for the purpose of numerical test-

ing, and at the same time, the corresponding computational cost of implementing TS-based models

could be substantially reduced. On the other hand, since the foundation of our simulation design

is indeed very different from existing schemes in the literature, this representation therefore al-

lows us to design the simulation algorithms for a wider range of distributions with Lévy measures

beyond the general TS family.

The article is organised as follows: In Section 2, we first present the fundamental results on the

multiple integral representation for a special recursive type of Laplace transform functions and

provide an simulation framework for some distributions beyond the TS
q

2n -family. In Section 3, we

derive a new simulation scheme, namely the backward recursive (BR) scheme, for exact simulation

based on the multiple integral representation for the density of
q

2n -TS distributions. In addition,

we outline the improved algorithms tailored for two important subclasses, one is a direct scheme

for the 1
2n -family, and the other is an enhanced scheme for the 3

2n -family. In Section 4, numerical

experiments for our algorithms as well as the associated comparisons with other schemes have

been carried out and reported. Section 5 makes a conclusion of this article, and proposes some

issues for possible further extensions and future research.

2 FUNDAMENTAL RESULTS

Before investigating theTS distributions, let us first introduce a general integral representation for

a special type of Laplace transform functions based on the explicit formula for the inverse Gaussian

(IG) density. This special type of Laplace transform has an interesting recursive structure, which

characterises a variety of different distributions even beyond the TS family. The integral represen-

tation leads to an recursive simulation scheme if the initial distribution is given. The theoretical

foundation in general is illustrated in Theorem 2.1 below.

Theorem 2.1. If a series of non-negative functions f̂1 (v ), . . . , f̂n (v ) for any n ∈ N+ possess a re-
cursive structure of

f̂k (v ) =
⎧⎪⎨⎪⎩
f̂1 (v ), k = 1,

ak

√
bk + ckv + f̂k−1 (v ) − ak

√
bk , k = 2, . . . ,n,

(1)

4On the other hand, some approximation-based algorithms have also been proposed in the literature, see Bondesson (1982),

Rosiński (2001), and Ridout (2009), however, they obviously involve numerical errors.
5For the class of α ∈ (1, 2), a non-exact simulation algorithm based on the A/R scheme with Gaussian approximation is

developed in Kawai and Masuda (2011).
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where ak > 0 and bk , ck ≥ 0, then, e−f̂n (v ) can be represented by

e−f̂n (v ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

e−vs1 f1 (s1)ds1, n = 1,

∞∫
0

· · ·
∞∫

0

e
−s1v−

n∑
k=2

ck sk v
f1 (s1 | s2)

a2s3e
−

(√
2b2s2−

a2s3√
2

)2

2s2

2
√

π s3
2

× · · · × ane−

(√
2bn sn− an√

2

)2

2sn

2
√

π s3
n

dsn · · · ds1, n > 1,

(2)

where f1 (s1) = L−1
s1
{e−f̂1 (v ) } and f1 (s1 | s2) = L−1

s1
{e−s2 f̂1 (v ) }.

Proof. We use IG ( a
b
,a2) to denote an IG distribution6 with mean a

b
and the shape parameter

a2 where a > 0, b ≥ 0. It is well known that its Laplace transform is given by

E

[
e−vIG ( a

b
,a2)

]
= e−a

(√
b2+2v−b

)
.

Since Equation (2) holds for n = 2. The proof for the general case can be conducted by the math-

ematical induction. Assuming Equation (2) also holds for an arbitrary integer n = j > 2, given

sj+1 ∈ (0,∞), we have

e−f̂ j (v )sj+1 = exp

(
−aj sj+1

[√
bj + c jv + f̂j−1 (v ) −

√
bj

])

=

∞∫
0

· · ·
∞∫

0

e
−
�s1+

j∑
k=2

ck sk
�v f1 (s1 | s2)

a2s3e
−

(√
2b2s2−

a2s3√
2

)2

2s2

2
√

π s3
2

× · · · ×
aj sj+1e

−

(√
2bj sj −

aj sj+1√
2

)2

2sj

2
√

π s3
j

dsj · · · ds1 .

Then, for n = j + 1, we have

e−f̂ j+1 (v ) =

∞∫
0

e−cj+1sj+1v e−f̂ j (v )sj+1
aj+1

2
√

π s3
j+1

e
−

(√
2bj+1sj+1−

aj+1√
2

)2

2sj+1 dsj+1

=

∞∫
0

· · ·
∞∫

0

e
−
�s1+

j+1∑
k=2

ck sk
�v f1 (s1 | s2)

a2s3e
−

(√
2b2s2−

a2s3√
2

)2

2s2

2
√

π s3
2

× · · · ×
aj+1e

−

(√
2bj+1sj+1−

aj+1√
2

)2

2sj+1

2
√

π s3
j+1

dsj+1 · · · ds1 .

Hence, Equation (2) also holds for n = j + 1, which means that this statement holds for any n ∈
N
+. �

With the integral representation Equation (2), we can develop an associate simulation scheme

for a variety class of RVs by setting different values for the parameters ak , bk , and ck . For instance,

if we set ck = 0 for all k , we can develop a general simulation scheme to sample an RV S , where

the Laplace transform is of the following form:

E

[
e−vS

]
= an

√
· · ·

√
· · ·

√
b2 + f̂1 (v ) − a2

√
b2 − an−1

√
bn−1 − an

√
bn , (3)

when the initial simulation scheme for the RV with Laplace transform f̂1 (v ) is known. Let f1 be

the density of RV with Laplace transform f̂1 (v ), then, the full simulation structure in general is

summarised in Algorithm 1.

6The distributional properties of IG distributions have been well documented in Chhikara and Folks (1989).
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ALGORITHM 1: General Framework for Simulating S with Laplace Transform Equation (3)

(1) if(n == 1){

(2) sample S1 with distribution f1 (s1)
(3) }

(4) else {

(5) for i ∈ {n − 1, . . . , 2}{
(6) sample Sn ∼ IG

(
an/2
√
bn ,a

2
n/2

)
(7) set ai = ak and bi = bk

(8) sample Si ∼ IG
(
Si+1/2

√
bi ,a

2
i S

2
i+1/2

)
and sample S1 with distribution f1 (s1 |S2)

(9) }

(10) return S1

Alternatively, if we set bk = ck = 0 for all k , this integral representation then leads to an exact

simulation scheme for a class of RVs with Laplace transform

an

√
· · ·

√
· · ·a2

√
f̂1 (v ). (4)

More specifically, if we set ak = 1, for all k and let f̂1 (v ) = vq , then, the Laplace transform Equa-

tion (1) corresponds to a class of stable distributions with stability index
q

2n . Indeed, this repre-

sentation for the stable distributions is of great interest, as it provides us an alternative simulation

framework to generate the associated TS class. In the rest of this article, we concentrate on the

exact simulation for the TS class with stability index
q

2n , which is mainly demonstrated in Section 3.

3 TEMPERED STABLE DISTRIBUTIONS AND EXACT SIMULATION

Positive TS distribution is a one-sided tilted stable distribution with stability index α ∈ (0, 1). It is an

infinitely divisible distribution that combines both of the stable distribution and Gaussian trends

by tilting the Lévy measure with an exponential function. More precisely, it has a very flexible

structure with three parameters, and the Lévy measure ν is specified by

ν (ds ) = e−βs θ

sα+1
1{s>0}ds, α ∈ (0, 1), β,θ ∈ (0,∞), (5)

where α is the stability index, θ is the intensity parameter, and β is the tilting parameter. In partic-

ular, if α = 1
2 , it reduces to a very important distribution, the IG distribution.

In the sequel, for simplicity, this TS distribution uniquely determined by Equation (5) is denoted

by TS (α , β,θ ), and its probability density function (PDF) is denoted by f (s;α , β,θ ). Obviously, if

β = 0, it then returns to a standard positive stable distribution S (α ,θ ) with Lévy measure

ν (ds ) =
θ

sα+1
1{s>0}ds,

and density f (s;α , 0,θ ). Proposition 3.1 below illustrates an important and well-known connection

between these two distributions.

Proposition 3.1. The Laplace transform of TS (α , β,θ ) is given by

E

[
e−vT S (α,β,θ )

]
= exp

(
−θΓ(1 − α )

α

[
(β +v )α − βα

])
, v ∈ R+, (6)
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with the density

f (s;α , β,θ ) = exp

(
θΓ(1 − α )

α
βα − βs

)
× f (s;α , 0,θ ), (7)

where Γ(u) is the gamma function, i.e., Γ(u) :=
∫ ∞

0
su−1e−s ds .

As the name stable implies in stable distribution, stability index α is the most crucial param-

eter, since this fundamentally determines its distributional property of the so-called stable laws
(or α-stable): a sum of any two independent stable RVs with the same index α is still a stable

RV with index α , and this invariance property does not hold across different α ’s (Borak et al.

2005, p. 22). It has been commonly recognised that, the density functions for general specifica-

tions on α are hard to be obtained analytically, and this indeed poses the greatest challenge to

the further study of their distributional properties and statistical inference. Nevertheless, a dif-

ferent specification for α leads to a different family of stable distributions, and some are par-

ticularly attractive in respect of their distinctive distributional properties and potentials for ap-

plications. Many of these interesting special families have been extensively investigated in the

literature, see Brown and Tukey (1946), Mitra (1981, 1982), Montroll and Bendler (1984), and

Penson and Górska (2010); also see surveys in Holt and Crow (1973), Devroye (1986), Zolotarev

(1986), Samoradnitsky and Taqqu (1994), and Uchaikin and Zolotarev (1999). For example, the
1

2n -family of stable distributions for n = −1, 0, 1, . . . is particularly prestigious, and the first three

members are all famous: they are Gaussian, Cauchy, and Lévy, respectively, and each one has

an explicit density function with a tailored algorithm available for exact simulation (Uchaikin

and Zolotarev 1999, p. 214–216). However, explicit densities beyond these three members rely

on heavy use of the hypergeometric function, which are not ideally suited to our goal for exact

simulation.

In the following parts of this section, we first set up our proposed framework of exact simulation

for the TS families with stability index that can be expressed in a general dyadic form of

α =
q

2n
∈ (0, 1), q ∈ N+, n ∈

{
k ∈ N+ | 2k > q

}
. (8)

We mainly consider the case where q is an odd number as, obviously, an even numerator will

reduce to an odd numerator by moving down the degree n. Meanwhile, we focus on some of its

important subclasses where further enhanced algorithms (such as direct simulation procedure) are

available. The associated numerical examples will be presented later in Section 4.

3.1 Tempered Stable Distributions with Stability Index α =
q
2n

Based on Theorem 2.1, if ak = 1 and bk = ck = 0 for any k = 2, . . . ,n and f̂1 (v ) = vq , then, Equa-

tion (1) represents the Laplace transform of a stable distribution with stability index
q

2n . Therefore,

we can represent the density of a TS distribution with stability index
q

2n ∈ (0, 1) based on Equa-

tions (7) and (2) in Theorem 3.2 as follows.

Theorem 3.2. For q,n ∈ N+ specified by Equation (8) and p := min1≤i≤n {i ∈ N+ : 2i ≥ q}, the
density of TS (

q

2n , β,θ ) has an integral representation of
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f (s1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
−βs1 + Ap β

q

2p

)
f (s1;

q

2p , 0, θ ), n = p,

∞∫
0

· · ·
∞∫

0

s2√
2

e
−

(√
2β s1−

s2√
2

)2

2s1√
2π s1

3
× · · · ×

s√
2

e
−

�
√

2β

1
2n−p sn−p− s√

2
�
2

2sn−p√
2π s3

n−p

fS (s )e−β
1

2n−p s+An β
q

2n
ds · · · ds2, n > p,

(9)

where An := 2n

q
θΓ(1 − q

2n ), and fS (s ) is the density of a stable distribution with stability index
q

2p

such that its Laplace transform is exp(−Anv
q

2p ).

When n = p, i.e., n is the smallest integer for
q

2n < 1, the density is equivalent to Equation (7),

and the simulation scheme degenerates to the SSR scheme (with the algorithm in Appendix A).

Whereas when n > p, from the multiple integral representation Equation (9) for the density func-

tion, we can observe thatTS (
q

2n , β,θ ) is closely related to an IG distribution, which can be directly

simulated by Michael et al. (1976).7 We therefore develop an alternative simulation framework

based on the integral representation for TS (
q

2n , β,θ ) in Algorithm 2, namely the BR scheme. The

recursion first needs to be initialised by generating an RV (named“seed” throughout this article) S̃
via the A/R scheme, the general BR scheme in Algorithm 2 as below to sample TS (

q

2n , β,θ ).

ALGORITHM 2: Backward Recursive Scheme for Simulating TS (
q
2n , β,θ )

(1) set θ̃ := 2n−pθΓ
(
1 − q

2n

)
/Γ

(
1 − q

2p

)
(2) repeat {

(3) sample S̃ ∼ S
(
q/2p , θ̃

)
and V ∼ U[0, 1]

(4) if ( V ≤ exp
(
−β1/2n−p

S̃
)

) break

(5) }

(6) set S̃n−p+1 = S̃
(7) for i ∈ {n − p, . . . , 2, 1}{
(8) sample S̃i ∼ IG

(
S̃i+1/2β

1/2i
, S̃2

i+1/2
)

(9) }

(10) return S̃1

This alternative scheme turns out to be useful for a large n, in the way that it avoids the low

acceptance rate of sampling a TS distribution with a lower stability index by generating a TS

distribution with a relative higher stability index and using a recursive procedure to produce the

rest. To illustrate the key idea of recursion, we could adopt the SSR scheme to generate the seed,

therefore, the corresponding expected complexity of the algorithm based on this SSR scheme isn −
p + 2 exp(Apβ

q

2p ). Since the complexity is exponentially increasing with respect to the parameter

β , to accelerate the algorithms, one should replace the SSR algorithm by the DR method (Devroye

2009), or, the fast rejection algorithm (Hofert 2011b), to speed up the simulation of the associated

seed.

7Note that, the exact simulation for IG distribution designed by Michael et al. (1976) is direct and very efficient, as it is

developed based on the explicit inverse transformation of multiple roots without the A/R scheme.
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3.2 Tempered Stable Distributions with Stability Index α = 1

2n

Mathematically elegant schemes of direct exact simulation without the A/R mechanism, like the

classical CMS method (Chambers et al. 1976), are indeed very rare in the families of TS distributions

but extremely desirable. In this section, we present our first discovery of such a unique family that

allows direct simulation, that is, the family of TS distributions with the stability index of binary
fractions 1

2n , n = 1, 2, . . .. In fact, it inherits from the prestigious family of stable distributions with

the same style as we mentioned at the beginning of this section. The first member of this 1
2n -family

of TS distributions is familiar: TS ( 1
2 , β,θ ) follows an IG distribution, since the associated stable

distribution S ( 1
2 ,θ ) follows a Lévy distribution. However, it is almost unknown for the remaining

members.

This family is very unique, which allows us to develop an extremely fast algorithm for exactly

sampling any member based on recursively calling the IG generator developed by Michael et al.

(1976). It is accurate and very straightforward to implement. Amazingly, it barely depends on the

choices of parameters, as the recursion is only driven by the efficient IG generator and no A/R

mechanism is involved. This direct procedure is summarised in Algorithm 3, and it is derived

immediately from a multiple integral representation of its density function in Corollary 3.3.

Corollary 3.3. The density of TS ( 1
2n , β,θ ) has an integral representation of

f
(
s1;

1

2n
, β,θ

)
=

∞∫
0

· · ·
∞∫

0

s2√
2√

2πs1
3
e
−

(√
2β s1−

s2√
2

)2

2s1 × · · · ×
An√

2√
2πs3

n

e−

�
√

2β
1

2n sn−An√
2
�
2

2sn dsn · · · ds2, (10)

where An = 2nθΓ(1 − 1
2n ).

Proof for Corollary 3.3 immediately follows Theorem 2.1 by setting f̂1 (v ) =
√
v . Hence, based on

Equation (10), we can directly generate a TS ( 1
2n , β,θ ) RV for n > 1 via the following Algorithm 3.

ALGORITHM 3: Direct Scheme for Simulating TS ( 1
2n , β,θ )

(1) sample S̃n+1 ∼ IG
(
2nθΓ(1 − 1

2n )/2β1/2n
, [2nθΓ(1 − 1/2n )]2/2

)
(2) for i ∈ {n, . . . , 2, 1}{
(3) sample S̃i ∼ IG

(
S̃i+1/2β

1/2i−1
, S̃2

i+1/2
)

(4) }

(5) return S̃1

To illustrate how Algorithm 3 works, let us consider the simplest case whenn = 2 as an example:

Since TS ( 1
4 , β,θ ) is equal in distribution to S̃1, it can be simulated by first generating an IG RV of

S̃2 ∼ IG

��

2θ Γ
(

3
4

)
β

1
4

, 8θ 2Γ2
(

3

4

)�� ;

then, conditional on one realisation of S̃2, we can generateTS ( 1
4 , β,θ ) i.e., S̃1 via another IG RV of

S̃1 | S̃2 ∼ IG 
� S̃2

2
√
β
,
S̃2

2

2
� .
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3.3 Tempered Stable Distributions with Stability Index α = 3

2n

To sample TS RVs beyond the 1
2n -family, we find that it is hard to obtain the associated direct

algorithms and eventually the A/R scheme is unavoidable. Similar to the stable distribution, there

is no explicit formula for the density of TS distribution in general. However, for some special

choices of q, we find an alternative way to generate the stable distribution S (
q

2p , θ̃ ) of the seed

without using Zolotarev’s integral representation. In this section, we take a further inside of the

density of stable distribution of S ( 3
4 ,θ ) based on some very interesting distributional results we

discovered in Lemma 3.4 for a special family of RVs with Laplace transform Equation (11). Then, we

design an enhanced algorithm to generate the 3
2n -TS family via algorithm for n = 2 and algorithm

for n > 2, respectively.

Let us first introduce a class of RVs with Laplace transform Equation (11), which is a simplified

version of Equation (1). This class of RVs has a closed-form distribution function, which leads to

a direct simulation scheme. Simply setting γ = 0, Equation (11) becomes the Laplace transform of

an S ( 3
4 ,θ ) RV. Details of the distribution property and simulation scheme for this special family

are presented in Lemma 3.4 and Algorithm 4.

Lemma 3.4. If the RV S has the Laplace transform

E

[
e−vS

]
= exp

(
−ζ

√
v

3
2 + γv

)
, ζ ,γ ∈ R+, (11)

then, the corresponding CDF of S can be represented by

FS (s ) =

∞∫
0

1

π (w + 1)
√
w

exp

(
−ζ

4 (w + 1)3

64w

1

s3
− γζ 2 (w + 1)

4

1

s

)
dw . (12)

Proof. Let fS (s ) and FS (s ) denote the PDF and the cumulative distribution function (CDF) of

S , respectively. According to Equation (11), the Laplace transform of FS (s ) can be derived:

∞∫
0

e−vsFS (s )ds =

∞∫
0

∞∫
u

e−vs fS (u)dsdu

=
1

v

∞∫
0

e−vu fS (u)du

=
1

v
exp

(
−ζ

√
v

3
2 + γv

)
, v ∈ R+. (13)

Note that, by change of variable u = vx , Equation (13) can be rewritten as

1

v
exp

(
−ζ

√
v

3
2 + γv

)
=

1

v

∞∫
0

e−(
√

v−γ )vx ζ

2
√
πx3

exp

(
− ζ

2

2x

)
dx

=
1
√
v

∞∫
0

e−
√

vu ζ

2
√
πu3

exp

(
−ζ

2v

4u
− γu

)
du .
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From the tables of Laplace transforms listed in Bateman (1954, p. 246), we recognise that

1
√

v
e−
√

vu =

∞∫
0

e−vy 1
√

πy
exp

(
−u2

4y

)
dy .

Finally, Equation (13) has an integral representation of

1

v
exp

(
−ζ

√
v

3
2 + γv

)
=

∞∫
0

∞∫
0

e−vy 1
√
πy

exp

(
−u

2

4y

)
ζ

2
√
πu3

exp

(
−ζ

2v

4u
− γu

)
dudy

=

∞∫
0

∞∫
0

e−vyevz 1

π
√
yz

exp

(
− ζ 4

64yz2
− γζ 2

4z

)
dzdy. (14)

Applying transformations s = y + z and w =
y

z
to Equation (14), we have z = s

w+1 , y = sw
w+1 with

the Jacobian of the transformation������
1

w+1
w

w+1

− s
(w+1)2

s
(w+1)2

������ = s

(w + 1)2
.

Hence, Equation (13) can be finally rewritten as

1

v
exp

(
−ζ

√
v

3
2 + γv

)
=

∞∫
0

∞∫
0

e−vs 1

π (1 +w )
√
w

exp

(
−ζ

4 (1 +w )3

64w

1

s3
− γζ 2 (1 +w )

4

1

s

)
ds,

which corresponds to the CDF of Equation (12). �

According to the closed-form CDF Equation (12) for S with Laplace transform Equation (11),

we can directly generate S using an explicit inverse transformation. The simulation scheme for

sampling S is provided in Algorithm 4 as follows.

ALGORITHM 4: Exact Scheme for Simulating S with Laplace Transform Equation (11)

(1) sample U (1) ∼ U[0, 1], and U (2) ∼ U[0, 1]

(2) setW = tan2
(

π
2 U

(1)
)
, A =

ζ 4 (1+W )3

64W , B =
γ ζ 2 (1+W )

4 , C = − ln(U2), and

D = 3
√

3
√

27A2C4 + 4AB3C2 + 27AC2 + 2B3

(3) return

1

3C

(
D

1
3 /2

1
3 + 2

1
3 B2/D

1
3 + B

)
(15)

Proof. We observe that the CDF of S in Equation (12) of Lemma 3.4 can be represented by

FS (s ) =

∞∫
0

fW (w )FS |W (s |w )dw,

whereW is a well-defined RV with the density

fW (w ) =
1

π
√
w (w + 1)

.
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The corresponding CDF is

FW (w ) =

w∫
0

1

π
√
x (1 + x )

dx =
2

π
tan−1

(√
w

)
,

which allowsW to be directly sampled via an explicit inverse transform by setting

W
D
= tan2

(π
2
U (1)

)
, U (1) ∼ U[0, 1].

Conditional onW , the CDF of S is therefore given by

FS |W (s |w ) = exp

(
−ζ

4 (1 +w )3

64w

1

s3
− γζ 2 (1 +w )

4

1

s

)
.

To sample S givenW , we then need to solve the following cubic equation:

− ln(U2) × S3 − γζ 2 (1 +W )

4
× S2 − ζ 4 (1 +W )3

64W
= 0, U (2) ∼ U[0, 1]. (16)

The solution for this cubic equation immediately follows Equation (15) using the parameter setting

in Algorithm 4 for the coefficients in Equation (16). �

For a stable RV S ( 3
4 ,θ ), its Laplace transform satisfies Equation (11) with γ = 0. The correspond-

ing distribution function for S ( 3
4 ,θ ) satisfies Equation (17).

Corollary 3.5. The CDF of stable distribution S ( 3
4 ,θ ) for any θ ∈ R+ can be represented by

FS ( 3
4 ,θ ) (s ) =

∞∫
0

1

π (w + 1)
√
w

exp

(
−κ

4 (w + 1)3

64s3w

)
dw, (17)

and the simulation scheme for the stable RV S ( 3
4 ,θ ) directly follows Algorithm 4 by setting B = 0.

Proof. The Laplace transform of S ( 3
4 ,θ ) is given by

E

[
e−vS ( 3

4 ,θ )
]
= e−κv

3
4
, κ =

4

3
θΓ

(
1

4

)
.

Based on Lemma 3.4, setting γ = 0 and ζ = κ in Equation (12), the CDF of S ( 3
4 ,θ ) follows

Equation (17). �

To generate the associated TS distribution TS ( 3
4 , β,θ ), instead of using the A/R based on

Zolotarev’s integral representation, we redesign an alternative A/R scheme using a gamma dis-

tributed envelop based on the distribution function we obtained for the stable distribution S ( 3
4 ,θ ).

The detail is given in Algorithm 5.

ALGORITHM 5: A/R Scheme for Simulating TS ( 3
4 , β,θ )

(1) set κ = 4θβ
3
4 Γ

(
1
4

)
/3

(2) repeat {

(3) sampleW = tan2
(

π
2 U

)
with U ∼ U[0, 1]

(4) sample E ∼ Γ(m, 1) and V ∼ U[0, 1]

(5) if (V ≤ 3m+16
m
3 κ

4(m+3)
3 e

m+3
3 (1 +W )3e

− κ4 (1+W )3

64W E3 /
(
23(m+2) (m + 3)

m+3
3 WEm+3

)
)break

(6) }

(7) return E/β
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Proof. LetX ∼ TS ( 3
4 , β,θ ) and set S = βX . According to Proposition 3.1, the Laplace transform

of S is given by

E

[
e−vS

]
= E

[
e−v βX

]
= exp


��−
4θΓ

(
1
4

)
3

[
(β + βv )

3
4 − β

3
4

]��
= exp


��−
4θβ

3
4 Γ

(
1
4

)
3

[
(1 +v )

3
4 − 1

]��
= exp

(
−κ

[
(1 +v )

3
4 − 1

] )
,

where κ = 4
3θβ

3
4 Γ( 1

4 ). Using Equations (7) and (17), the density of S can be written as

fS (s ) =

∞∫
0

1

π (w + 1)
√
w

3κ4 (1 +w )3

64ws4
exp

(
−κ

4 (1 +w )3

64ws3

)
e−s+κ dw . (18)

The joint density of S andW is

f (s,w ) =
1

π (w + 1)
√
w

3κ4 (1 +w )3

64ws4
exp

(
−κ

4 (1 +w )3

64ws3

)
e−s+κ , w, s > 0.

To generate S , we consider a Gamma distributed envelop with rate parameter m > 0 and scale

parameter 1 for S , and this envelop appears to be the most natural choice to be adopted according

to its density Equation (18). The joint density we have is

д(s,w ) =
1

π (w + 1)
√
w

1

Γ(m)
sm−1e−s , w, s > 0.

We have

f (s,w )

д(s,w )
=

3κ4 (w + 1)3Γ(m)eκ

64w

1

s3+m
exp

(
−κ

4 (1 +w )3

64ws3

)

≤
Γ(m)eκe−

m+3
3

(
64

3κ4

) m
3 (m + 3)

m+3
3 w

m
3

(w + 1)m

≤ Γ(m)eκe−
m+3

3

(
8

3

)m (
1

6κ4

) m
3

(m + 3)
m+3

3 = C (m,κ),

where C (m,κ) can be minimised overm. It is equivalent to find them that minimises

logC (m,κ) =
1

3
[log Γ(m) + 3κ − (m + 3) + 8m log(2) − 4m log(3) − 4m log(κ) + (m + 3) log(m + 3)].

The optimal valuem∗ satisfies the following equation:

1

4

[
log (m∗ + 3) + 3ψ (0) (m∗)

]
= log

(
3κ

4

)
, for ψ (0) (m) =

dΓ(m)

dm
,

and we have

m∗ =
3κ

4
− 3

8
+

143

128

1

m∗
− 1857

1024

1

m∗2
+ O

(
1

m∗3

)
≈ 3κ

4
+ c .

When we numerically fit this linear setting, the optimal value c obtained is −0.14. Hence, given κ,

the optimal ratem∗ for the gamma distributed envelop is chosen by setting

m∗ = −0.14 +
3

4
κ .
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Fig. 1. Acceptance rates of Algorithm 5 and the SSR scheme for samplingTS ( 3
4 , β,θ )based on the parameter

setting θ = 0.7 and β ∈ (0, 10).

To generate S , we first sampleW using the explicit inverse transformation, and then generate the

gamma distribution envelop E ∼ Γ(m∗, 1). The A/R decision follows

V ≤ f (E,W )

C (m∗,κ)д(E,W )
=

3m∗+16
m∗

3 κ
4(m∗+3)

3 e
m∗+3

3

23(m∗+2) (m∗ + 3)
m∗+3

3

(1 +W )3

W

e−
κ4 (1+W )3

64W E3

Em∗+3
,

and the corresponding acceptance rate is 1
C (m∗,κ ) . Finally, we obtain TS ( 3

4 , β,θ ) by setting

X = S
β

. �

Comparing with the acceptance rate exp(− 4
3θΓ( 1

4 )β
3
4 ) using the SSR scheme to generate

TS ( 3
4 , β,θ ), Algorithm 5 leads to a higher acceptance rate, in particular for a large value of β .

The difference of the acceptance rates to generate one TS ( 3
4 , β,θ ) RV for these two schemes with

respect to β is plotted in Figure 1. The SSR scheme is only desirable when the tilting parameter is

small, whereas our Algorithm 5 is more competitive when the tilting parameter is large. Hence,

instead of using the SSR scheme to generate the seeds for the TS ( 3
2n , β,θ ) family, we adopt

Algorithm 5 to sample seeds. The enhanced algorithm forTS ( 3
2n , β,θ ) is provided in Algorithm 6.

Proof. Letting X ∼ TS
(

3
2n , β,θ

)
and S = βX , we have

E

[
e−vS

]
= E

[
e−v βX

]
= exp


��−
2nθΓ

(
1 − 3

2n

)
3

[
(β + βv )

3
2n − β

3
2n
]��

= exp

��−

2nθβ
3

2n Γ
(
1 − 3

2n

)
3

[
(1 +v )

3
2n − 1

]�� .
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ALGORITHM 6: Backward Recursive Scheme for Simulating TS ( 3
2n , β,θ )

(1) set κ = 2nθβ
3

2n Γ (1 − 3/2n ) /3
(2) repeat {

(3) sampleW = tan2
(

π
2 U

)
with U ∼ U[0, 1]

(4) sample E ∼ Γ(m, 1) and V ∼ U[0, 1]

(5) if (V ≤ 3m+16
m
3 κ

4(m+3)
3 e

m+3
3 (1 +W )3e

− κ4 (1+W )3

64W E3 /
(
23(m+2) (m + 3)

m+3
3 WEm+3

)
)break

(6) }

(7) set S̃n−1 = E
(8) for i ∈ {n − 2, . . . , 2, 1}{
(9) sample S̃i ∼ IG

(
S̃i+1/2, S̃

2
i+1/2

)
(10) }

(11) return S̃1/β

Based on Theorem 3.2 and Equation (18), the density of S ∼ TS ( 3
2n , 1,θβ

3
2n ) has the integral

representation

f
(
s1;

3

2n
, 1,θβ

3
2n

)
=

∞∫
0

· · ·
∞∫

0

s2√
2√

2πs1
3
e
−

(√
2s1−

x2√
2

)2

2s1 × · · · ×
s√
2√

2πs3
n−2

e
−

(√
2sn−2− s√

2

)2

2sn−2

×3κ4 (w + 1)2

64πw
3
2 s4

exp

(
−κ

4 (w + 1)3

64s3w
− s + κ

)
dw · · · ds2,

where

κ =
2n

3
θβ

3
2n Γ

(
1 − 3

2n

)
. (19)

The seed, denoted S̃ , follows a distribution ofTS ( 3
4 , 1,θβ

3
2n ), and the density satisfies Equation (18)

with the new κ defined in Equation (19). We directly follow Algorithm 5 to generate seeds and

follow the general BR scheme to generate X . �

The total number of RVs needed to generate one TS ( 3
2n , β,θ ) for our BR scheme would be n −

2 + 3C (m∗,κ), which is the sum of the expected number of iterations of the A/R algorithm required

to generate a seed and the number of RVs generated via the recursion. The total number of RVs

needed for the classical SSR scheme is 2 exp( 2nθ
3 Γ(1 − 3

2n )β
3

2n ), so our BR scheme shall have a

better performance in general. In Figure 2, we compare the logarithm of the expected number of

iterations for these two algorithms. The computation cost for the BR scheme is less than the SSR

scheme, especially, when the tilting parameter β becomes larger. In general, different from the SSR

scheme, the expected complexity of the BR scheme does not increase exponentially with respect

to the β .

4 NUMERICAL EXAMPLES

In this section, we provide numerical examples for these three families of TS distributions with

stability index α = 1
2n ,

3
2n ,

q

2n , respectively. The simulation experiments are all conducted on a nor-

mal laptop with the Intel Core i7-6500U CPU@2.50GHz processor, 8GB RAM, Windows 10 Home,

and 64-bit Operating System. The algorithms are coded and performed in MatLab (R2016b), and

the computing time is measured by the elapsed CPU time in seconds. Numerical validation and
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Fig. 2. Logarithm of the expected number of random variables needed for our backward recursive (BR) scheme

(via Algorithm 5) versus the simple stable rejection (SSR) via Algorithm 7 based on the parameter setting

θ = 0.7, n = 2, 3, 4, 5, respectively, for the tilting parameter β ∈ (0, 10).

tests for our simulation algorithms are based on the PDF and CDF ofTS (α , β,θ ), which can be cal-

culated by inverting the Laplace transform Equation (6) numerically.8 In particular, we assess the

goodness-of-fit by comparing the CDFs and PDFs obtained by our BR scheme and by the numerical

inverse of Laplace transform. The associated plots of CDFs, PDFs and histograms under different

parameter settings are illustrated in Figures 3, 4, and 5, respectively. Overall, we can observe that

each of these algorithms can achieve a very high level of accuracy, and the simulated CDF and

PDF are fitted well to the associated numerical inversion.

We carry out a comparison of CPU time for our BR scheme against the SSR scheme and the DR

scheme for three families of TS distributions with stability index α = 1
2n ,

3
2n ,

q

2n . The associated

numerical results in detail is reported in Table 1. Comparing with the SSR scheme and DR scheme,

our direct scheme of Algorithm 3 for the first family of α = 1
2n performs extraordinarily fast, since

no A/R procedure is involved as clearly demonstrated in Section 3.2. For example, it is nearly

1,000 times faster than the SSR scheme and 10 times faster than the DR scheme for simulating

100,000 replications based on parameter setting α = 1/32,θ = 0.5, β = 1. The out-performance of

our algorithm would even become much more substantial when θ or β increases or n increases.

More remarkably, the speed of simulation is barely effected by the changes of parameters θ and

β , and the CPU time only slightly increases when n increases. The associated numerical results in

8A variety of methods are available for numerically inverting Laplace transforms with high accuracy, such as Gaver (1966),

Stehfest (1970), Abate and Whitt (1992, 1995, 2006). Here, we use the Euler scheme in Abate and Whitt (2006).
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Fig. 3. Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algorithm 3) with

the CDF/PDF obtained via numerical inverse under the parameter setting α = 1/22, 1/25, θ = 0.5, β = 3.0,

respectively.

Table 1. Comparison of CPU Time for Backward Recursive (BR), Simple Stable Rejection (SSR),

Double Rejection (DR) for TS (
q
2n ,θ , β ) Based on Parameter Setting q = 1, 3, 23, 27, 35,

n = 2, 3, 5, 6, 7, θ = 0.50, 0.70, β = 1.0, 2.0

α 1/22 1/23 1/25 3/22 3/23 3/25 23/26 27/26 35/27

θ = 0.50 β = 1.0
BR 1.58 2.20 2.34 1.25 7.62 7.50 4.45 4.36 8.85

SSR 7.45 47.25 2152.53 7.53 6.52 178.39 4.97 4.47 6.15

DR 25.31 23.85 24.89 27.94 23.67 23.48 26.68 25.34 31.52

θ = 0.70 β = 2.0
BR 1.42 2.14 2.87 1.29 8.21 8.29 30.78 45.45 32.53

SSR 54.41 581.38 3272.53 257.76 32.28 3681.59 35.25 39.65 28.93

DR 41.23 37.72 32.89 34.24 30.78 31.45 31.12 32.65 35.12

Each value in the tables is produced from 100,000 replications.

detail for this sensitivity analysis are reported in Table 2. Our Algorithm 6 is also very fast and can

easily beat the SSR scheme, as the generator for the stable law of seeds is enhanced by our own

design of Algorithm 5. For example, it is about 400 times faster than the SSR scheme for exactly

simulating 100,000 replications with parameter setting of α = 3/32,θ = 0.7, β = 2.0. Moreover, it

is about four times faster than the DR scheme. However, if we generate the seed using the SSR

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 20. Publication date: July 2018.



Exact Simulation for a Class of Tempered Stable and Related Distributions 20:17

Fig. 4. Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algorithms 5 and

6) with the CDF/PDF obtained via numerical inverse under the parameter setting α = 3/22, 3/25, θ = 0.7, β =
2.0, respectively.

scheme for our Algorithm 2 in general for the third family of α =
q

2n , then, the performance is at

a similar level as the SSR scheme. In general, increasing n would increase the computing time, as

more IG variables are needed but the computing time mainly depends on the time of generating

the seed. Hence, when the acceptance rate of SSR becomes smaller for a larger tilting parameter β ,

we can replace the simulation scheme of the seed by DR scheme to improve the simulation speed.

5 CONCLUDING REMARKS

In this article, we provide a new framework for the exact simulation of a class of TS and related

distributions based on the multiple integral representation. The principle of our approach, which

is based on the backward recursion, is clearly distinguishing from the existing algorithms in the

literature. It works pretty efficiently for some subclasses of TS distributions, and is also applicable

to some other classes beyond the TS family. This scheme could lead to many prospective appli-

cations in practice with improved numerical efficiency: It could be used as the basis to exactly

generate TS-constructed RVs. For instance, it is well known that, one two-sided TS RV on the real

line R can be decomposed as the difference of two independent one-sided TS RVs on the positive

half line R+(Küchler and Tappe 2013, p. 4262). Moreover, it can also be used to generate paths of

various TS-driven stochastic processes, such as Lévy TS subordinators; see an abundance of their

applications for modelling the stochastic volatility with the associated econometric methods in

Barndorff-Nielsen and Shephard (2001b, 2002, 2003), Barndorff-Nielsen et al. (2002), Gander and

Stephens (2007a, 2007b), Andrieu et al. (2010), and Todorov et al. (2015). These RVs and stochastic

processes could further lead to numerous applications in many other fields. In particular, it would

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 20. Publication date: July 2018.



20:18 A. Dassios et al.

Fig. 5. Comparison of the empirical CDF/PDF for our backward recursive (BR) scheme (via Algorithm 2) with

the CDF/PDF obtained via numerical inverse under the parameter setting α = 13/25, 23/26, θ = 0.25, β = 0.5,

respectively.

Table 2. Sensitivity Analysis of the CPU Time Against the Varying Parameters

(θ , β ) ∈ (0, 1] × (0, 1] for Our Backward Recursive (BR) Scheme (via Algorithm 3)

for α = 1/2n , n = 2, 3, 4, 5, Respectively

β
θ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α = 1/4

0.2 1.34 1.17 1.23 1.28 1.42 1.19 1.30 1.34 1.30 1.39

0.6 1.16 1.20 1.22 1.14 1.22 1.13 1.13 1.22 1.16 1.30

1.0 1.11 1.14 1.17 1.19 1.13 1.13 1.22 1.14 1.16 1.25

α = 1/8

0.2 2.52 2.19 2.17 2.59 2.33 2.19 2.22 2.30 2.14 2.20

0.6 2.45 2.20 2.19 2.42 2.16 2.13 2.16 2.19 2.25 2.22

1.0 2.50 2.19 2.17 2.41 2.23 2.16 2.25 2.11 2.09 2.11

α = 1/16

0.2 2.91 3.08 2.55 2.47 2.92 2.92 2.58 2.44 2.84 2.48

0.6 2.91 2.91 2.45 2.52 2.91 3.19 2.47 2.52 2.89 2.53

1.0 2.91 2.88 2.42 2.52 2.88 2.88 2.48 2.50 2.89 2.64

α = 1/32

0.2 2.88 2.81 2.88 3.33 2.94 2.80 2.81 2.81 3.38 2.91

0.6 2.88 3.05 2.92 3.45 2.94 2.81 2.84 2.80 3.27 2.89

1.0 2.88 2.80 2.81 3.28 2.84 2.73 2.80 2.73 3.31 2.84

Each value in the tables is produced from 100,000 replications.
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be extremely useful for numerical validating and testing the newly developed statistical inference

or econometric methods for the TS-based models, where the parameters are set up for Monte Carlo

studies. Our Algorithm 3 for the 1
2n -family is strongly recommended to be adopted for generating

the required data, and a variety of choices for the parameters n, β and θ would provide enough

flexibility for the purpose of numerical testing and validation. Since it is a bit of an art to find

appropriate envelops in the development of A/R schemes, the further enhancement for these A/R

schemes adopted in this article could be a meaningful topic for future research.

APPENDIX

A SIMPLE STABLE REJECTION (SSR) SCHEME

The SSR scheme introduced by Brix (1999) is illustrated in Algorithm 7 as below.

ALGORITHM 7: Simple Stable Rejection (SSR) Scheme for TS (α , β,θ )

(1) repeat{

(2) sample U ∼ U[0,π ], Es ∼ Exp (1) and V ∼ U[0, 1]

(3) set S = (−θΓ(−α ))−
1
α sin (αU + πα/2) cos(U )−

1
α cos

(
(1 − α )U − πα/2

) 1−α
α E
− 1−α

α
s

(4) if (V ≤ exp (−βS )) break

(5) }

(6) return S
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